
The Design of the Force.com Multitenant Internet
Application Development Platform

Craig D Weissman
CTO, Salesforce.com

San Francisco, CA 94105

cweissman@salesforce.com

Steve Bobrowski
Technical Marketing Consultant, Salesforce.com

sbobrows001@gmail.com

ABSTRACT
Force.com is the preeminent on-demand application development
platform in use today, supporting some 55,000+ organizations.
Individual enterprises and commercial software-as-a-service (SaaS)
vendors trust the platform to deliver robust, reliable, Internet-scale
applications. To meet the extreme demands of its large user
population, Force.com’s foundation is a metadata-driven software
architecture that enables multitenant applications.

The focus of this paper is multitenancy, a fundamental design
approach that can dramatically improve SaaS application
management. This paper defines multitenancy, explains its benefits,
and demonstrates why metadata-driven architectures are the premier
choice for implementing multitenancy.

Categories and Subject Descriptors
H.2.1: Database management – Logical design.

D.2.11: Software Engineering – Software architecture, Data
abstractions.

General Terms
Algorithms, Performance, Design.

Keywords
Multi-tenancy, Query Optimization, Flex Schema, Domain Specific
Language, Object-relational Mapping.

1. INTRODUCTION
History has shown that every so often, incremental advances in
technology and changes in business models create major paradigm
shifts in the way software applications are designed, built, and
delivered to end users. Today, reliable broadband Internet access,
service-oriented architectures (SOAs), and the cost inefficiencies of
managing dedicated on-premise applications are driving a transition
toward the delivery of managed, shared, Web-based services called
software as a service (SaaS).

2. MULTITENANT APPLICATIONS
To decrease the cost of delivering the same application to many
different sets of users, an increasing number of applications are
multitenant. Whereas a traditional single-tenant application requires
a dedicated set of resources to fulfill the needs of just one
organization, a multitenant application can satisfy the needs of
multiple tenants (companies or departments within a company, etc.)
using the hardware resources and staff needed to manage just a
single software instance (Figure 1).

Figure 1. A multitenant application shares a single stack of

resources to satisfy the needs of multiple organizations
Tenants using a multitenant service operate in virtual isolation from
one another. Organizations can use and customize an application as
though they each have a separate instance, yet their data and
customizations remain secure and insulated from the activity of all
other tenants. The single application instance effectively morphs at
runtime for any particular tenant at any given time.
Multitenancy is an architectural approach that pays dividends to
both application providers and users. Operating just one application
instance for multiple organizations yields tremendous economy of
scale for the provider. Only one set of hardware resources is
necessary to meet the needs of all users, a relatively small,
experienced administrative staff can efficiently manage only one
stack of software and hardware, and developers can build and
support a single code base on just one platform (operating system,
database, etc.) rather than many. The economics afforded by
multitenancy allow the application provider to, in turn, offer the
service at a lower cost to customers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.

889

Some interesting side benefits of multitenancy are improved quality,
user satisfaction, and customer retention. Unlike single-tenant
applications, which are isolated silos deployed outside the reach of
the application provider, a multitenant application is one large
community that is hosted by the provider itself. This design shift lets
the provider gather operational information from the collective user
population (which queries respond slowly, what errors happen, etc.)
and make frequent, incremental improvements to the service that
benefit the entire user community at once.
Two additional benefits of a multitenant platform-based approach
are collaboration and integration. Because all users run all
applications in one space, it is easy to allow any user of any
application varied access to specific sets of data. This capability
greatly simplifies the effort necessary to integrate related
applications and the data they manage.

3. COMPARING CLOUD COMPUTING
AND PAAS
Raw computing clouds are machine-centric services that provide
on-demand infrastructure as a service (IaaS) for the deployment of
applications. Such clouds provide little more than the computing
power and storage capacity needed to execute virtual servers that
comprise an application. Some SaaS vendors looking for a quick go-
to-market strategy avoid the challenges of developing a true
multitenant solution and deliver single-tenant instances via IaaS.
Platform as a service (PaaS), such as Force.com, is an application-
centric approach that abstracts the concept of servers altogether.
PaaS lets developers focus on core application development from
day one and to deploy an application with the push of a button. The
provider never needs to worry about multitenancy, high-availability,
load-balancing, scalability, system backups, patches and security,
and other infrastructure-related concerns.

4. METADATA-DRIVEN
ARCHITECTURES
Multitenancy is practical only when it can support applications that
are reliable, customizable, upgradeable, secure, and fast. But how
can a multitenant application allow each tenant to create custom
extensions to standard data objects and entirely new custom data
objects? How will tenant-specific data be kept secure in a shared
database? How can one tenant customize the application's interface
and business logic without affecting the functionality or availability
of the application for all other tenants? How can the application’s
code base be patched or upgraded without breaking tenant-specific
customizations?
It’s difficult to create a statically compiled application executable
that can meet these and other unique challenges of multitenancy.
Inherently, a multitenant application must be dynamic in nature, or
polymorphic, to fulfill the individual expectations of various tenants
and their users.
For these reasons, multitenant application designs have evolved to
use a runtime engine that generates application components from
metadata—data about the application itself. In a well-defined
metadata-driven architecture (Figure 2), there is a clear separation of
the compiled runtime engine (kernel), application data, the metadata
that describes the base functionality of an application, and the
metadata that corresponds to each tenant’s data and customizations.
These distinct boundaries make it possible to independently update
the system kernel, modify the core application, or customize tenant-

specific components, with virtually no risk of one affecting the
others.

Figure 2. Well-defined metadata-driven architecture

5. ARCHITECTURE OVERVIEW
Force.com’s optimized metadata-driven architecture delivers
extraordinary performance, scalability, and customization for on-
demand, multitenant applications.
In Force.com, everything exposed to developers and application
users is internally represented as metadata. Forms, reports, work
flows, user access privileges, tenant-specific customizations and
business logic, even the definitions of underlying data tables and
indexes, are all abstract constructs that exist merely as metadata in
Force.com’s Universal Data Dictionary (UDD). For example, when
a developer is building a new custom application and defines a
custom table, lays out a form, or writes some procedural code,
Force.com does not create an “actual” table in a database or compile
any code. Instead, Force.com simply stores metadata that the
platform’s engine can use to generate the “virtual” application
components at runtime. When someone wants to modify or
customize something about the application, all that’s required is a
simple non-blocking update to the corresponding metadata.
Because metadata is a key ingredient of Force.com applications, the
platform’s runtime engine must optimize access to metadata;
otherwise, frequent metadata access would prevent the platform
from scaling. With this potential bottleneck in mind, Force.com uses
metadata caches to maintain the most recently used metadata in
memory, avoid performance sapping disk I/O and code
recompilations, and improve application response times.
Force.com stores the application data for all virtual tables in a few
large database tables that serve as heap storage. The platform’s
engine then materializes virtual table data at runtime by considering
corresponding metadata.
To optimize access to data in the system’s large tables, Force.com’s
engine relies on a set of specialized pivot tables that maintain
denormalized data for various purposes such as indexing,
uniqueness, relationships, etc.
Force.com’s data processing engine helps streamline the overhead
of large data loads and online transaction processing applications by
transparently performing data modification operations in bulk. The
engine has built-in fault recovery mechanisms that automatically
retry bulk save operations after factoring out records that cause
errors.

890

To further hone application response times, the platform employs an
external search service that optimizes full-text indexing and
searches. As applications update data, the search service’s
background processes asynchronously update tenant- and user-
specific indexes in near real time. This separation of duties between
the application engine and the search service lets platform
applications efficiently process transactions without the overhead of
text index updates, and at the same time quickly provide users with
accurate search results.
As Force.com’s runtime application generator dynamically builds
applications in response to specific user requests, the engine relies
heavily on its “multitenant-aware” query optimizer to execute
internal operations as efficiently as possible. The query optimizer
considers which user is executing a given application function, and
then, using related tenant-specific metadata maintained in the UDD
along with internal system pivot tables, builds and executes data
access operations as optimized database queries.
Now that you have a general idea of the key architecture
components that make up the underlying mechanisms of Force.com,
the following sections explain the structure and purpose of various
internal system elements in more detail.

6. DATA DEFINITION AND STORAGE
Rather than attempting to manage a vast, ever-changing set of actual
database structures on behalf of each application and tenant, the
Force.com storage model manages “virtual” database structures
using a set of metadata, data, and pivot tables, as illustrated in
Figure 3.

Figure 3. Force.com’s data definition and storage model

When organizations create custom application objects (i.e., custom
tables), the UDD keeps track of metadata concerning the objects,
their fields, relationships, and other object definition characteristics.

Meanwhile, a few large database tables store the structured and
unstructured data for all virtual tables, and a set of related,
specialized pivot tables maintain denormalized data that makes the
combined data set extremely functional.

6.1 The Objects Metadata Table
The Objects metadata table stores information about the custom
objects (a.k.a. tables or entities) that an organization defines for an
application, including a unique identifier for an object (ObjID), the
organization (OrgID) that owns the object, and the name given to
the object (ObjName).

6.2 The Fields Metadata Table
The Fields metadata table stores information about the custom fields
(a.k.a. columns or attributes) that an organization defines for custom
objects, including a unique identifier for a field (FieldID), the
organization (OrgID) that owns the encompassing object, the object
that contains the field (ObjID), the name of the field (FieldName),
the field’s datatype, a Boolean value to indicate if the field requires
indexing (IsIndexed), and the position of the field in the object
relative to other fields (FieldNum).

6.3 The Data Table
The Data table stores the application-accessible data that maps to all
custom objects and their fields, as defined by metadata in Objects
and Fields. Each row includes identifying fields such as a global
unique identifier (GUID), the organization that owns the row
(OrgID), and the encompassing object identifier (ObjID). Each row
in the Data table also has a Name field that stores a “natural name”
for corresponding object instances; for example, an Account object
might use “Account Name,” a Case object might use “Case
Number,” etc. The Value0 ... Value500 columns store application
data that maps to the objects and fields declared in the Objects and
Fields tables, respectively; all “flex” columns use a variable-length
string datatype so they can store any structured type of application
data (strings, numbers, dates, etc.).
Custom fields can use any one of a number of standard structured
datatypes such as text, number, date, and date/time as well as special
use structured datatypes such as picklist (enumerated field),
autonumber, formula, master-detail relationship (foreign key),
checkbox (Boolean), email, URL, and others. Custom fields can
also be required and have custom validation rules (for example, one
field must be greater than another field), both of which are enforced
by the platform's application server.
When an organization declares or modifies a custom application
object, Force.com manages a row of metadata in the Objects table
that defines the object. Likewise, for each custom field, Force.com
manages a row in the Fields table, including metadata that maps the
field to a specific flex column in the Data table for the storage of
corresponding field data. Because Force.com manages object and
field definitions as metadata rather than actual database structures,
the platform can tolerate multitenant application schema
maintenance activities without blocking the concurrent activity of
other tenants and users.
No two fields of the same object can map to the same flex column
(slot) in the Data table for storage; however, a single flex column
can manage the information of multiple fields, as long as each field
stems from a different object.

891

Figure 4. Example of single flex column

As the simplified representation of the Data table in Figure 4 shows,
flex columns are of a universal datatype (variable-length string),
which permits Force.com to share a single flex column among
multiple fields that use various structured datatypes (strings,
numbers, dates, etc.).
Force.com stores all flex column data using a canonical format and
uses underlying database system datatype-conversion functions
(e.g., TO_NUMBER, TO_DATE, TO_CHAR), as necessary, when
applications read and write data to flex columns.

6.4 The CLOBs Table
Force.com supports the declaration of fields as character large
objects (CLOBs) to permit the storage of long text fields up to
32,000 characters. For each row in the Data table that has a CLOB,
Force.com stores the CLOB out-of-line in a pivot table called
CLOBs, which the system can join with corresponding rows in the
Data table as necessary.

6.5 The Indexes Pivot Table
Traditional database systems rely on indexes to quickly locate
specific rows in a database table that have fields matching a specific
condition. However, it is not practical to create native database
indexes for the flex columns of the Data table because Force.com is
likely using a single flex column to store the data of many fields that
have varying structured datatypes. Instead, Force.com manages an
index of the Data table by synchronously copying field data marked
for indexing to an appropriate column in a pivot table called
Indexes.
The Indexes table contains strongly typed, indexed columns such as
StringValue, NumValue, and DateValue that Force.com uses to
locate field data of the corresponding datatype. For example,
Force.com would copy a string value in a Data table flex column to
the StringValue field in Indexes, a date value to the DateValue field,
etc. The underlying indexes of the Indexes table are standard non-
unique database indexes. When an internal system query includes a
search parameter that references a structured field in a custom
object, the platform’s query optimizer uses the Indexes table to help
optimize associated data access operations.
Note: Force.com can handle searches across multiple languages
because the platform’s application servers use a case-folding
algorithm that converts string values to a universal, case-insensitive
format. The StringValue column of the Indexes table stores string
values in this format. At runtime, the query optimizer automatically
builds data access operations so that the optimized SQL statement
filters on the corresponding case-folded StringValue that
corresponds to the literal provided in the search request.

6.6 The UniqueFields Pivot Table
Force.com lets an organization indicate when a field in an object
must contain unique values (case-sensitive or case-insensitive).

Considering the arrangement of the Data table and shared usage of
the Value columns for custom field data, it is not practical to create
unique database indexes for the table.
To support uniqueness for custom fields, Force.com uses the pivot
table called UniqueFields; this table is very similar to the Indexes
pivot table except that the UniqueFields table’s underlying database
indexes enforce uniqueness. When an application attempts to insert
a duplicate value into a field that requires uniqueness, or an
administrator attempts to enforce uniqueness on an existing field
that contains duplicate values, Force.com relays an appropriate error
message to the application.

6.7 The Relationships Pivot Table
Force.com provides “relationship” datatypes that an organization
can use to declare relationships (referential integrity) among
application objects. When an organization declares an object’s field
with a relationship type, the platform maps the field to a Value field
in the Data table, and then uses this field to store the ObjID of a
related object.
To optimize join operations, Force.com maintains a pivot table
called Relationships. The Relationships index table has two
underlying database unique composite indexes that allow for
efficient object traversals in either direction, as necessary.

6.8 Additional Pivot Tables
The following pivot tables also provide important functionality to
Force.com:
� FallbackIndex Table—Records the Name of all objects,

allowing the application server to perform a fall-back search on
the Name field and return reasonable search results in the event
the platform’s external search engine becomes overloaded.

� NameDenorm Table—Stores the ObjID and Name of each
object instance, which allows Force.com to execute a simple
query that retrieves the Name of each referenced object instance
for display as part of a hyperlink.

� History Tracking Table—Stores information about all field
changes, which allows Force.com to provide history tracking used
in audit trails.

6.9 Partitioning of Data and Metadata
All Force.com data, metadata, and pivot table structures, including
underlying database indexes, are physically partitioned by OrgID
(by tenant) using native database partitioning mechanisms. Data
partitioning is a proven technique that database systems provide to
physically divide large logical data structures into smaller, more
manageable pieces. Partitioning can also help to improve the
performance, scalability, and availability of a large database system
such as a multitenant environment. For example, by definition,
every Force.com application query targets a specific tenant’s
information, so the query optimizer need only consider accessing
data partitions that contain a tenant’s data rather than an entire table
or index—this common optimization is sometimes referred to as
“partition pruning.”

7. APPLICATION DEVELOPMENT,
LOGIC, AND PROCESSING
Force.com supports two different ways to create custom
applications and their individual components: declaratively by using
the native platform application framework and programmatically by

892

using application programming interfaces (APIs). The following
sections explain more about each approach and related application
development topics.

7.1 The Application Framework
Developers can declaratively build custom Force.com applications
using the Force.com application framework. The platform’s native
point-and-click interface supports all facets of the application
development process, including the creation of an application’s data
model (custom objects and their fields, relationships, etc.), security
and sharing model (users, organization hierarchies, profiles, etc.),
user interface (screen layouts, data entry forms, reports, etc.), as
well as logic and work flow.
Force.com application framework user interfaces are easy to build
because there’s no coding involved. Behind the scenes, they support
all the usual data access operations, including queries, inserts,
updates, and deletes.
Force.com’s native integrated development environment (IDE)
provides easy access to many built-in platform features that make it
easy to implement common application functionality without
writing complicated and error-prone code. These features include:
� Declarative workflows—Predefined actions triggered by the

insert or update of an object instance (row). A workflow can
trigger a task, email alert, update a data field, or send a message.

� Encrypted/masked fields—Text fields that developers
configure to encrypt the corresponding data and use input masks
to hide screen information.

� Validation rules—Rules that enforce a domain integrity rule
without any programming.

� Formula fields—A declarative feature of the Force.com
application framework that makes it easy to add a calculated field
to an object.

� Roll-up summary fields—A cross-object field that makes it
easy to aggregate child field information in a parent object.

7.2 Metadata and Web Services APIs
Force.com also provides programmatic APIs for building
applications. These APIs are compatible with SOAP-based
development environments, including Visual Studio .NET (C#) and
Apache Axis (Java and C++).
The Force.com Metadata API is useful for managing application
components—to create and modify the metadata that corresponds to
custom object definitions, page layouts, work flows, etc. To create,
retrieve, update, or delete object instances (rows of data),
applications can use the Force.com Web Services API.
To access the Force.com Web service, developers first download a
Web Service Description Language (WSDL) file. The development
platform then uses the WSDL file to generate an API to access the
organization’s corresponding Force.com Web service (data model).
There are two types of Force.com WSDL files. An Enterprise
WSDL file is for developers who are building organization-specific
applications. An Enterprise WSDL file is a strongly typed
representation of an organization’s data model. It provides
information about the organization’s schema, data types, and fields
to the development environment, allowing for a tighter integration
between it and the Force.com Web service. An Enterprise WSDL
changes if custom fields or custom objects are added to, renamed, or

removed from an organization’s application schema. In contrast, a
Partner WSDL file is for salesforce.com partners that are developing
client applications for multiple organizations. As a loosely typed
representation of the Force.com object model, a Partner WSDL
provides an API that is useful for accessing data within any
organization.

7.3 Bulk Processing with API Calls
Transaction-intensive applications generate less overhead and
perform much better when they combine and execute repetitive
operations in bulk. For example, contrast two ways an application
can load many new instances of an object. An inefficient approach
is to use a routine with loop that inserts individual object instances,
making one API call for each insert operation. A much more
efficient approach is to create an array of object instances and have
the routine insert all of them with a single API call.
Applicable Force.com Web Services API calls such as create(),
update(), and delete() support bulk operations. For maximum
efficiency, the platform implicitly bulk-processes all internal steps
related to an explicit bulk operation, as illustrated in Figure 5.

Figure 5. Force.com’s bulk processing engine

Figure 5 also shows how Force.com’s bulk processing engine can
account for isolated faults encountered during any step along the
way. When a bulk operation starts in partial save mode, the engine
identifies a known start state and then attempts to execute each step
in the process (bulk validate field data, bulk fire pre-triggers, bulk
save records, etc.). If the engine detects errors during any step, the
engine rolls back offending operations and all side effects, removes
the rows that are responsible for the faults, and continues,
attempting to bulk process the remaining subset of rows. This
process iterates through each stage of the process until the engine

893

can commit a subset of rows without any errors. The application can
examine a return object to identify which rows failed and what
exceptions they raised.

Note: At the discretion of the application, an all-or-nothing mode is
also available for bulk operations. Also, the execution of triggers
during a bulk operation is subject to internal governors that restrict
the amount of work.

7.4 Deletes, Undeletes, and the Recycle Bin
When someone deletes an individual object instance (record) from a
custom object, Force.com simply marks the object instance for
deletion by modifying the object instance’s IsDeleted field (in the
Data table). This effectively places the object in what is known as
the platform’s Recycle Bin. Force.com lets users view and restore
selected object instances from the Recycle Bin for up to 30 days
before permanently removing them from the internal Data table.
The platform limits the total number of records it maintains for an
organization based on the total number of user licenses for the
organization.
When someone deletes a parent record involved in a master-detail
relationship, Force.com automatically deletes all related child
records, provided that doing so would not break any referential
integrity rules in place. For example, when a user deletes a
SalesOrder, Force.com automatically cascades the delete to
dependent LineItems. Should someone subsequently restore a parent
record from the Recycle Bin, the platform automatically restores all
child object instances as well.
In contrast, when someone deletes a referenced parent record
involved in a lookup relationship, Force.com automatically sets all
dependent keys to null. If someone subsequently restores the parent
record, Force.com automatically restores the previously nulled
lookup relationships except for the relationships that were
reassigned between the delete and restore operations.
The Recycle Bin also stores dropped fields and their data until an
organization permanently deletes them or 45 days has elapsed,
whichever happens first. Until that time, the entire field and all its
data is available for restoration.

7.5 Data Definition Processing
Certain types of modifications to the definition of an object require
more than simple UDD metadata updates. In such cases, Force.com
uses efficient mechanisms that help reduce the overall performance
impact on the platform’s multitenant applications.
For example, consider what happens behind the scenes when
someone modifies a column’s datatype from picklist to text.
Force.com first allocates a new slot for the column’s data, bulk
copies the picklist labels associated with current values, and then
updates the column’s metadata so that it points to the new slot.
While all of this happens, access to data is normal and applications
continue to function without any noticeable impact.
As another example, consider what happens when someone adds a
roll-up summary field to a table. In this case, Force.com
asynchronously calculates initial summaries in the background
using an efficient bulk operation. While the background calculation
is happening, users that view the new field receive an indication that
Force.com is calculating the field’s value.

7.6 APEX
Apex is a strongly typed, object-oriented procedural programming
language that developers can use to declare program variables and
constants and execute traditional flow control statements (if-else,
loops, etc.), data manipulation operations (insert, update, upsert,
delete), and transaction control operations (setSavepoint, rollback)
on behalf of Force.com applications. Developers can build Apex
routines that add custom business logic to most application events,
including button clicks, updates to data, Web service requests,
custom batch services, and others.
Apex is similar to Java and is an integral Force.com component that
helps the platform deliver reliable multitenant applications. For
example, Force.com automatically validates all embedded Sforce
Object Query Language (SOQL) and Sforce Object Search
Language (SOSL) statements within an Apex class to prevent code
that would otherwise fail at runtime. The platform then maintains
corresponding object dependency information for valid Apex
classes and uses this information to prevent changes to metadata that
would otherwise break dependent applications.
To prevent malicious or unintentional monopolization of shared,
multitenant platform resources, Force.com has an extensive set of
governors and resource limits associated with Apex code execution.
For example, Force.com closely monitors the execution of an Apex
script and limits how much CPU time it can use, how much memory
it can consume, how many queries and DML statements it can
execute, and much more. Individual queries that the platform’s
optimizer regards as too expensive to execute throw a runtime
exception to the caller. Although such limits might sound somewhat
restrictive, they are necessary to protect the overall scalability and
performance of the shared platform for all concerned applications.
In the long term, these measures help to promote better coding
techniques among platform developers and create a better
experience for everyone. For example, a developer that initially tries
to code a loop that inefficiently updates a thousand rows one row at
a time will receive runtime exceptions due to resource limits and
then begin using Force.com’s efficient bulk processing API calls.
To further avoid potential platform problems introduced by poorly
written applications, the deployment of a new production
application is a process that is strictly managed. Before an
organization can transition a new custom application from
development to production status, salesforce.com requires unit tests
that validate the functionality of the application’s Apex routines.
Submitted unit tests must cover no less than 75 percent of the
application’s source code. Salesforce.com executes submitted unit
tests in the Force.com Sandbox environment to ascertain if the
application will adversely affect the performance and scalability of
the multitenant population at large. The results of an individual unit
test indicate basic information such as the total number of lines
executed as well as specific information about the code that was not
executed by the test.
Once salesforce.com certifies an application for production, the
deployment process consists of a single transaction that copies all
the application’s metadata into a production Force.com instance and
reruns the corresponding unit tests. If any part of the process fails,
Force.com simply rolls back the transaction and returns exceptions
to help troubleshoot the problem.
After a production application is live, Force.com’s built-in
performance profiler automatically analyzes and provides associated
feedback to administrators. Performance analysis reports include

894

information about slow queries, data manipulations, and sub-
routines that developers can review and use to tune application
functionality. The platform also logs and returns information about
runtime exceptions to administrators to help debug their
applications.

8. INTERNAL QUERY OPTIMIZATIONS
Most modern database systems determine optimal query execution
plans by employing a cost-based query optimizer that considers
relevant statistics about target table and index data. However,
conventional cost-based optimizer statistics are designed for single-
tenant applications and fail to account for the data access
characteristics of any given user executing a query in a multitenant
environment. For example, a given query that targets an object
(table) with a large volume of data would most likely execute more
efficiently using different execution plans for users with high
visibility (a manager that can see all object instances) versus users
with low visibility (sales people that can only see rows related to
themselves).
To provide sufficient statistics for determining optimal query
execution plans in a multitenant platform, Force.com maintains a
complete set of optimizer statistics (tenant-, group-, and user-level)
for each virtual multitenant object. Statistics reflect the number of
rows that a particular query can potentially access, carefully
considering overall tenant-specific object statistics (total number of
rows owned by the tenant as a whole, etc.) as well as more granular
statistics (the number of rows that a specific privilege group or end
user can potentially access, etc.).
Force.com also maintains other types of statistics that prove helpful
with certain queries. For example, the platform maintains statistics
for all custom indexes to reveal the total number of non-null and
unique values in the corresponding field, and histograms for picklist
fields that reveal the cardinality of each list value.
When existing statistics are not in place or are not considered
helpful, Force.com’s optimizer has a few different strategies it uses
to help build reasonably optimal queries. For example, when a
query filters on the Name field of an object, the optimizer can use
the FallbackIndex pivot table to efficiently find requested object
instances. In other scenarios, the optimizer will dynamically
generate missing statistics at runtime.
Used in tandem with optimizer statistics, Force.com’s optimizer also
relies on internal security related tables (Groups, Members,
GroupBlowout, and CustomShare) that maintain information about
the security domains of platform users, including a given user’s
group memberships and custom access rights for objects.
The flow diagram in Figure 6 illustrates what happens when
Force.com intercepts a request for data that is in one of the large
heap tables such as Data. The request might originate from any
number of sources, such as a page request from an Application
Framework application, a Web services API call, or an Apex script.
First, the platform executes “pre-queries” that consider the
multitenant-aware statistics. Then, considering the results returned
by the pre-queries, the platform builds an optimal database query for
execution in the specific setting.
As Table 1 shows, Force.com can execute the same query four
different ways, depending on who submits the query and the
selectivity of the query’s filter conditions.

Figure 6. Force.com’s database query process

Table 1. Force.com builds a database query for a data access
request based on the results of pre-queries

Pre-Query Selectivity
Measurements

User Filter

Write final database access query,
forcing ...

Low Low ... nested loops join; drive using view
of rows that the user can see.

Low High ... use of index related to filter.

High Low ... ordered hash join; drive using Data
table.

High High ... use of index related to filter.

9. FULL-TEXT SEARCH ENGINE
Web-based application users have come to expect an interactive
search capability to scan an application’s data and return up-to-date
ranked results in sub-second response times. To provide such robust
functionality for platform applications, Force.com uses an
architecture based on an external search engine.
As applications update data in text fields (CLOBs, Name, etc.), a
pool of indexing servers asynchronously update corresponding
indexes, which the search engine maintains outside the core
database. To optimize the indexing process, Force.com
synchronously copies modified chunks of text data to an internal
“to-be-indexed” table as transactions commit, thus providing a
relatively small data source that minimizes the amount of data that
indexing servers must read from disk. The search engine
automatically maintains separate indexes for each tenant.
Depending on the current load and utilization of indexing servers,
text index updates may noticeably lag behind actual transactions. To
avoid unexpected search results originating from stale indexes,

895

Force.com also maintains an MRU cache of recently updated
objects that the platform’s application servers consider when
materializing full-text search results. The platform maintains MRU
caches on a per-user and per-organization basis to efficiently
support possible search scopes.
Force.com optimizes the ranking of records within search results
using several different methods. For example, the system considers
the security domain of the user performing a search and weighs
heavier those objects to which the current user has access. The
system can rank more actively updated objects ahead of those that
are relatively static. The user can choose to weight search results as
desired, for example, placing more emphasis on recently modified
objects.

10. CONCLUSION
Platform as a service (PaaS) and software as a service (SaaS) are
contemporary software application development and delivery
models that an increasing number of organizations are using to
improve their time to market, reduce capital expenditures, and
improve overall competitiveness in a challenging global economy.
Internet-based, shared computing platforms are attractive because
they let businesses quickly access hosted, managed software assets
on demand and avoid the costs and complexity associated with the
purchase, installation, configuration, and ongoing maintenance of an
on-premises data center.

The most successful on-demand SaaS/PaaS company is
salesforce.com. The company developed the Force.com platform
whose metadata-driven architecture enables anyone to efficiently
build and deliver sophisticated, customizable, mission-critical,
Internet-scale multitenant applications. Using standards-based Web
service APIs and native platform development tools, Force.com
developers can easily build all components of a Web-based
application, including the data model, user interface, business logic,
integrations with other applications, and more.
Over the past 10 years, salesforce.com engineers have optimized all
layers of the Force.com platform for multitenancy, with features that
let the platform deliver unprecedented Internet scalability to the
height of 170 million transactions daily. Platform features such as
the bulk data processing API, the Apex programming language, an
external full-text search engine, and its unique query optimizer help
make multitenant platform applications highly efficient and scalable
with little or no thought from developers.
Salesforce.com’s managed approach for the deployment of
production applications ensures top-notch performance, scalability,
and reliability for all dependent applications. Additionally,
salesforce.com continually monitors and gathers operational
information from Force.com applications to help drive incremental
improvements and new platform features that immediately benefit
existing and new applications.

896

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

